2 posts tagged with Prokaryote. (View popular tags)
Displaying 1 through 2 of 2. Subscribe:

Users that often use this tag:
Blasdelb (2)

Constitutive formation of caveolae in a bacterium.

Constitutive formation of caveolae in a bacterium. [Full Text]
Caveolin plays an essential role in the formation of characteristic surface pits, caveolae, which cover the surface of many animal cells. The fundamental principles of caveola formation are only slowly emerging. Here we show that caveolin expression in a prokaryotic host lacking any intracellular membrane system drives the formation of cytoplasmic vesicles containing polymeric caveolin. Vesicle formation is induced by expression of wild-type caveolins, but not caveolin mutants defective in caveola formation in mammalian systems. In addition, cryoelectron tomography shows that the induced membrane domains are equivalent in size and caveolin density to native caveolae and reveals a possible polyhedral arrangement of caveolin oligomers. The caveolin-induced vesicles or heterologous caveolae (h-caveolae) form by budding in from the cytoplasmic membrane, generating a membrane domain with distinct lipid composition. Periplasmic solutes are encapsulated in the budding h-caveola, and purified h-caveolae can be tailored to be targeted to specific cells of interest.
Elio Schaechter writes in plain English about how fantastically amazing and unexpected the researchers actually pulling this off is, and he also talks about it in more detail in his podcast.
posted by Blasdelb on Oct 18, 2012 - 22 comments

 

Provirophages and transpovirons as the diverse mobilome of giant viruses

Provirophages and transpovirons as the diverse mobilome of giant viruses
Abstract: A distinct class of infectious agents, the virophages1 that infect giant viruses of the Mimiviridae family, has been recently described. Here we report the simultaneous discovery of a giant virus of Acanthamoeba polyphaga (Lentille virus) that contains an integrated genome2 of a virophage (Sputnik 2), and a member of a previously unknown class of mobile genetic elements3, the transpovirons4. The transpovirons are linear DNA elements of ∼7 kb [kilobases]5 that encompass six to eight protein-coding genes, two of which are homologous6 to virophage genes. Fluorescence7 in situ hybridization8 showed that the free form of the transpoviron replicates within the giant virus factory and accumulates in high copy numbers inside giant virus particles, Sputnik 2 particles, and amoeba cytoplasm. Analysis of deep-sequencing data showed that the virophage and the transpoviron can integrate9 in nearly any place in the chromosome of the giant virus host and that, although less frequently, the transpoviron can also be linked to the virophage chromosome. In addition, integrated fragments of transpoviron DNA were detected in several giant virus and Sputnik genomes. Analysis of 19 Mimivirus strains revealed three distinct transpovirons associated with three subgroups of Mimiviruses. The virophage, the transpoviron, and the previously identified self-splicing introns10 and inteins11 constitute the complex, interconnected mobilome12 of the giant viruses and are likely to substantially contribute to interviral gene transfer.
[Full Text PDF] and two explanations in English [more inside]
posted by Blasdelb on Oct 16, 2012 - 28 comments

Page: 1